NLSD/BASE 2010

Location of Mill Farm, Malvern

Farm information:

Malvern Worcestershire

- Size 320 ha
- Three units12 km apart
- Average field size6.8 ha
- Soil Type Heavy Silty/clay
- Average Rainfall700mm (1050 2008!)

Reduced tillage over the last 40 years

Eco-Intensive Agriculture Jig-Saw – you need all the pieces

Why reduced Tillage?

Differing goals economically and environmentally

Better understanding of soils and techniques

New technologies

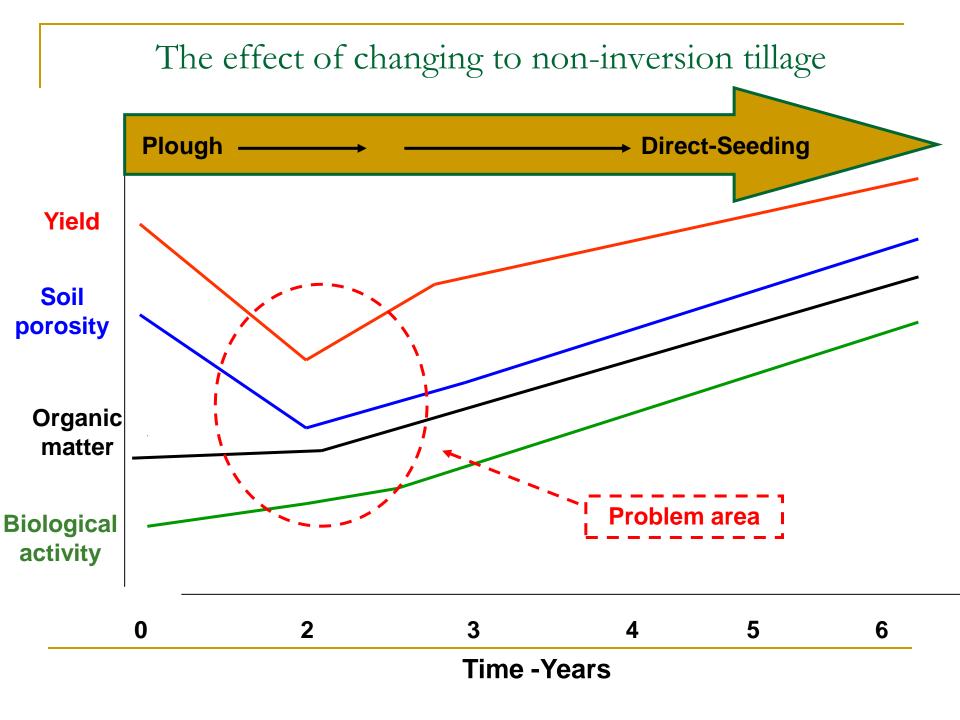
SD Worldwide

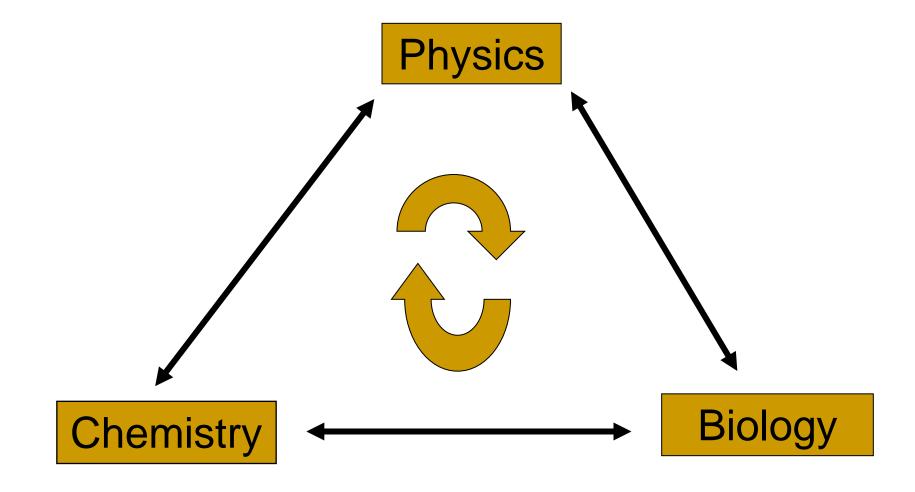
Spring sown crops – Northern Hemisphere Canada, US, Finland, Eastern Europe.

Continuous Growing season -

Southern Hemisphere – New Zealand, Australia, South America

"Crops do not stop growth for Winter"


Direct-Drill or "One -Pass seeding



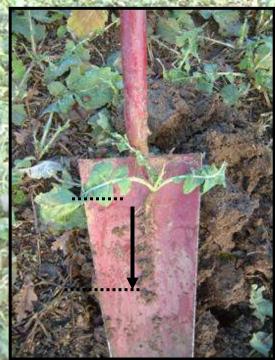
Soil Basics

Direct drilled Wheat

Direct drilled Spring Beans

Direct drilled Oats

Soil Structure – compaction depth



Soil structure & its effect on crop rooting

Boulet draineur

Residue or Trash?

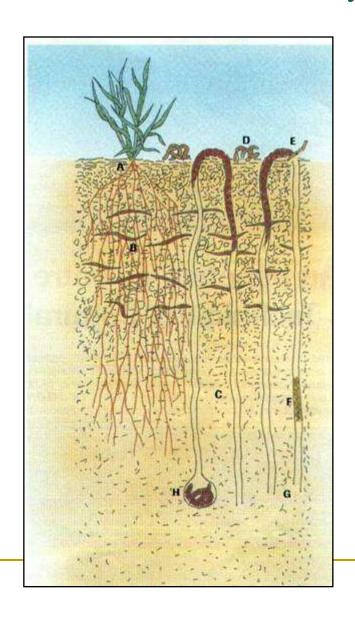
Residue –

- Improves soil workability
- Maintains soil fertility
- Reduces erosion
- Encourages earthworms

Trash -

- Creates establishment and weed control problems
- Encourages slugs
- Reduces crop yields

Harrowing to spread straw

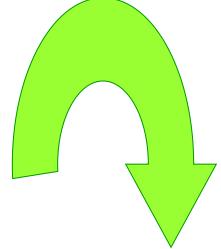


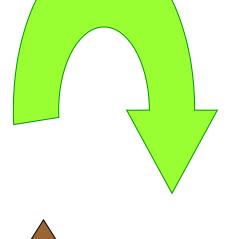
Action of Harrow

- Harrow tines disrupt slugs (and slug eggs)
- Micro-tilth
 promotes
 germination of
 weed seeds
- Spreads straw and chaff

Worm activity

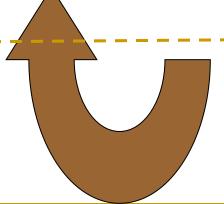
ROTATION TCS/SD



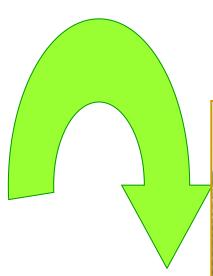


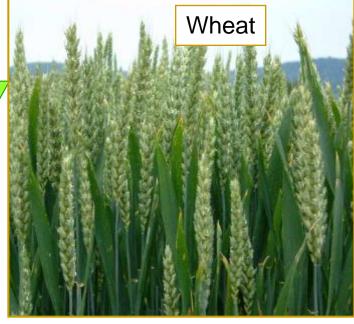
ROTATION

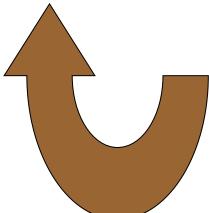
Controllable grass weeds

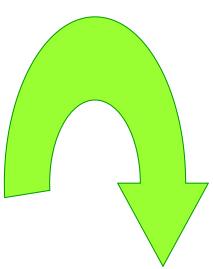


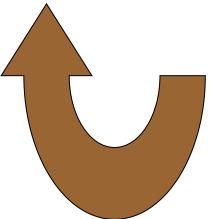



Wheat

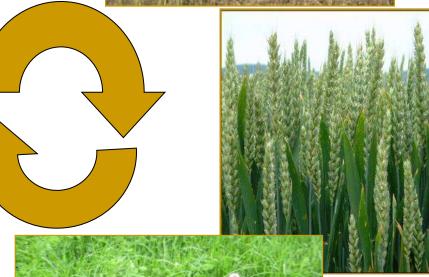



ROTATION Poor soils (low pH & P+K)




ROTATION Low N input

ROTATION: Bio-mass (bio-gas)

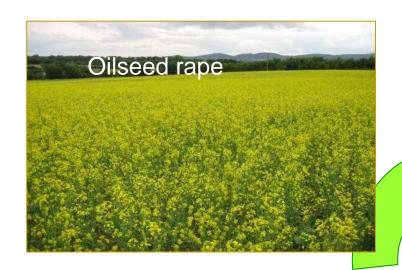


Bio-mass rotation

Choice of varieties

- Long strawed cereals tend to have more vigorous root systems
- Hybrid rape varieties are worth considering where drilling is late..

12/9/07 Excalibur/Astrid

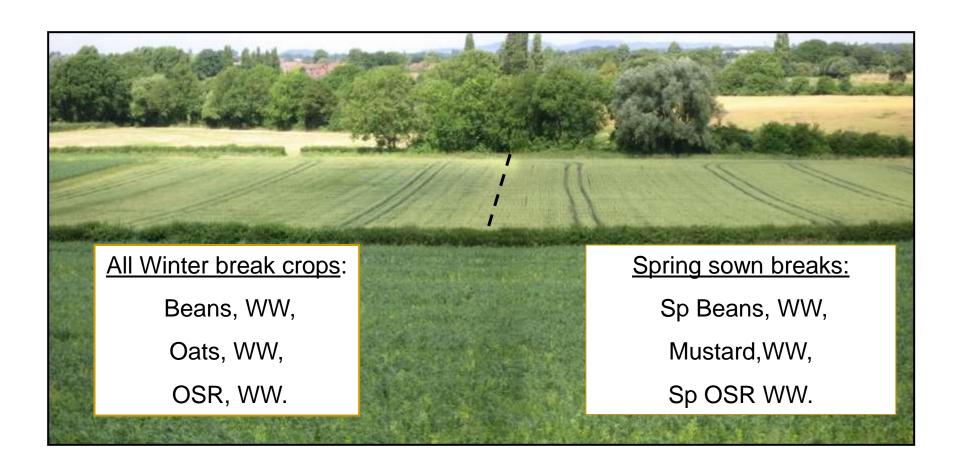

Grass weeds

ROTATION - Double-break

Challenge conventional systems

Oilseed rape after wheat

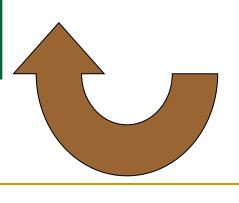
Value of double break


Wheat yield increased by 1 ton/ha for -:

Beans/OSR/Wheat/Wheat compared to Beans/Wheat/OSR/Wheat

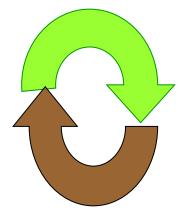
Improved grass weed control

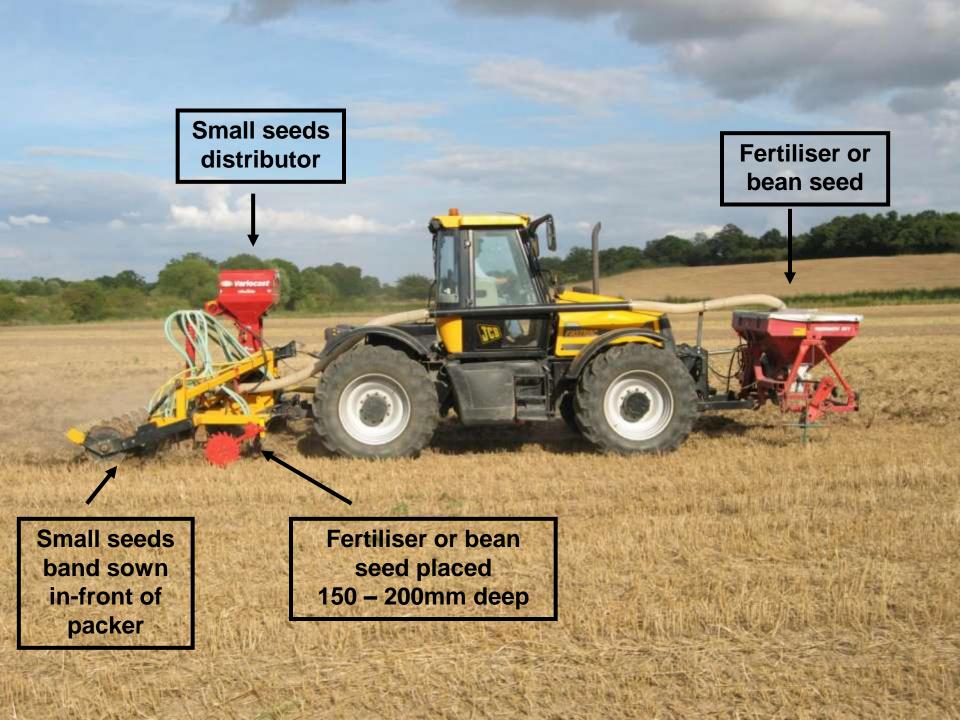
Benefit of Spring break crops.



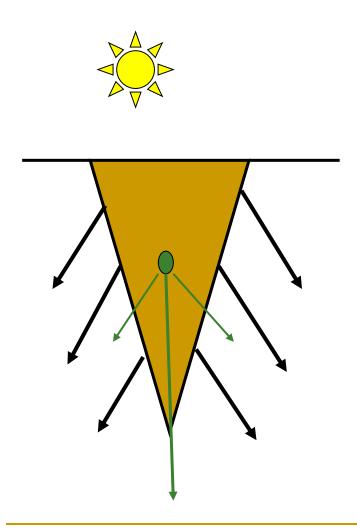
ROTATION - Spring OSR/Wheat

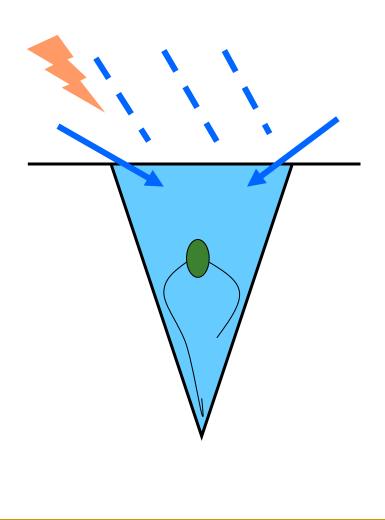
Winter v Spring sown break crops.


Establishment Rotation (direct drill/till-seed)



Roots – stabilise soil structure


Till-seeded beans

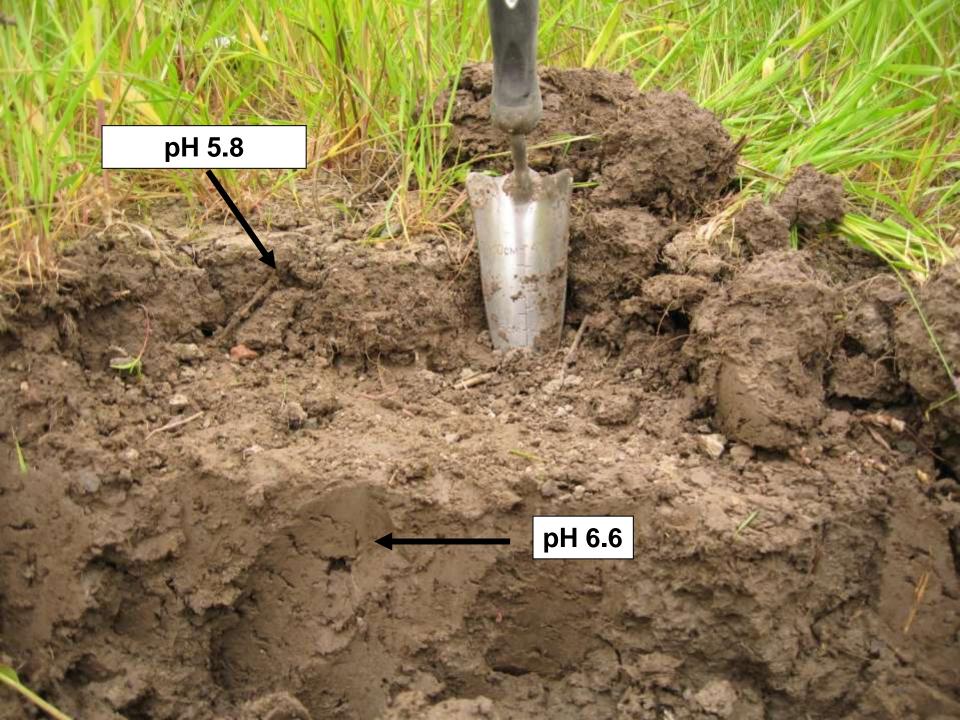


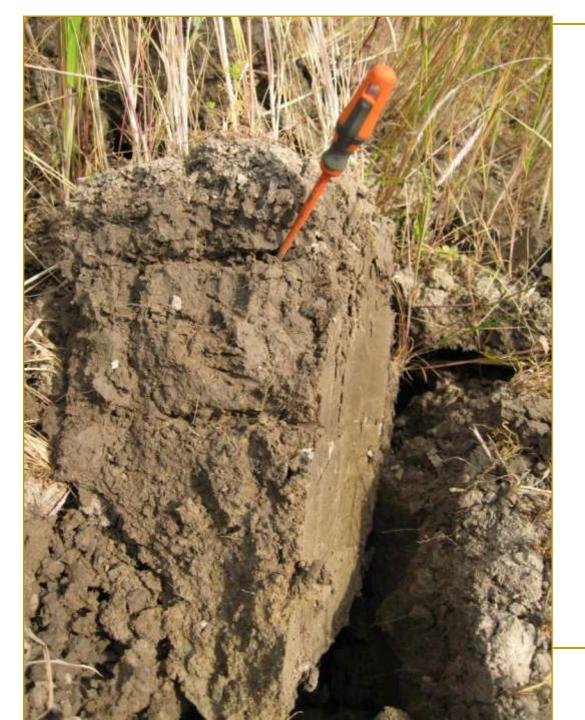
Problem with strip-till

Three very wet summers

- 135mm rain July 20th
 2007 170mm total for month
- July/August/September2008 300min rainfall
- July 2009 23 wet days over 125 mm!

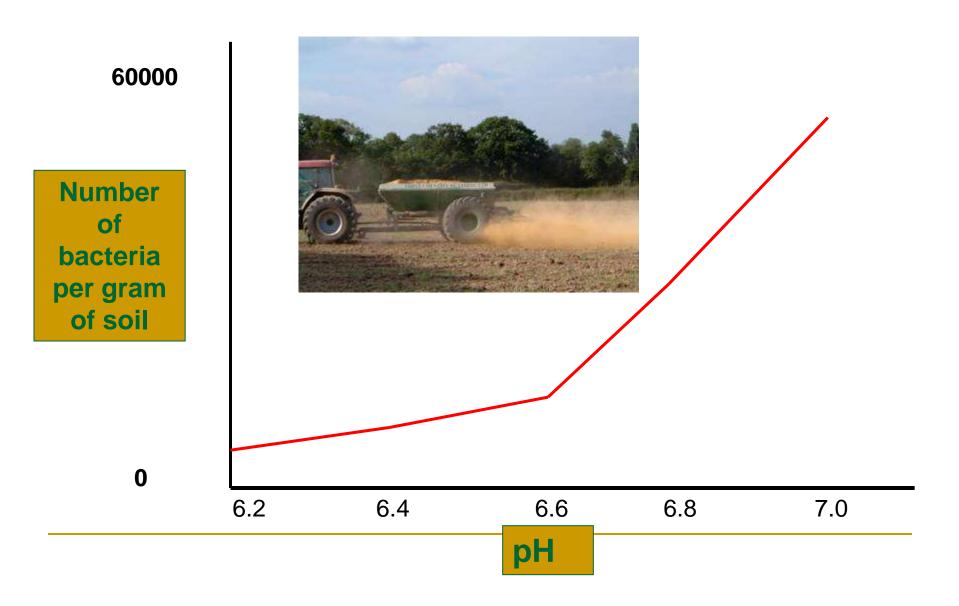
Wet straw – severe wheelings





Uneven soil moisture

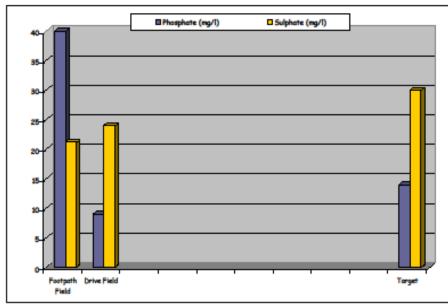
Problem Soil

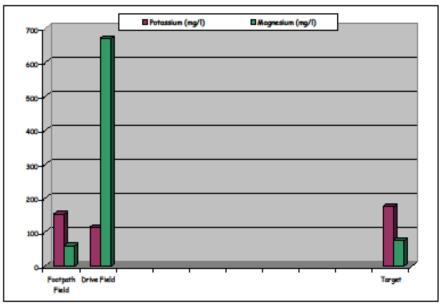


Well Balanced Hi Magnesium

The influence of pH on soil biological activity

W Bullock & Partners
The Mill Farm, Malvern


e-mail soilsolutions®man.com Nov '09


Soil Health Check - Primary Data for Soil & Nutrient Management Plans

Sample refer	ence	Seil	Phosphate	Potassium	Magnesium	Nitrogen	Sulphate	Seil	Seil P	article Dist	ribution	Stone	CEC	Soil Classification	Erosion Risk
Field	crop	pН	P ₂ O ₅	K₂O	MgO	(SNS)	50,	O.M.	Sand	Silt	Clay	content	cmol/kg	class texture	based on texture
Footpath Field	arable	7.7	40.0 3+	152.0 2-	59.0 2-	41.2 2	21.2	3.2%	22.0%	44.0%	34.0%		21.2	3 mineral Clay loam	v low to low
Drive Field	arable	6.4	9.0 0	114.0 1+	672.0 7	41.4 2	24.0	3.3%	12.0%	42.0%	46.0%		31.3	3 mineral Clay	v low to low
	, in the second	·													·
	, in the second					·									·
	, in the second					·		·							·

Suggested Range 6.0 - 6.8 14 - 18 175 - 225 75 - 100 30 - 60 30 - 45 5.0%

Major Nutrient Sufficiency Levels (19279)

Analysis conducted to ISO 17025. Pully compliant with UK Ministry ref 427₅₀ & EC (Good Agricultural Practice) Soil & Water Framework Directives. Developed in Association with the Albrecht Foundation use in throughout the EC. All rights reserved © 1985-2009

Prescription Nutrition®

The Mill Form, Malvern Dedicated Analysis for Integrated Soil, Plant & Animal Nutrient Management

texture

Clay loam

Advisor Steve Townsend

Agrimax

Sample Ref Footpath Field

arable

arable Soil class 3 Mineral

al Stones <5% pam Soil OM 3.2%

e-mail: soilsolutions@msn.com

Soil pH (water) 7.7 Soil pH (salt) 7.1

Major Nutrie	nts (mg/l)	Deficit	Ŀ	Good	High	Excess	Kar	Elemental (mg/l)
Phosphate, P ₂ O ₅	40.0 3+					7	2.35	17.4 P
Potassium, K ₂ O	152.0 2-			•	Ш	ПТ	0.82	126.2 K
Magnesium, MgO	59.0 2-				П	Ш	0.71	35.6 Mg
Calcium, CaO	3808.9 3	/ /			П	Ш	1.04	2722.2 Ca
Sodium, Na ₂ O	15.3 1				П	Ш	0.40	11.4 Na
Sulphate, 50 ₃	21.2 1				Ш	Ш	0.53	8.5 S
Nitrogen, NH _{4-BIR}	21.8 2				Ш	Ш	0.41	103.2 N
Nitrate, NO ₃					Ш	Ш		
K:Mg ratio	2.6 :1				ΠT	ПΤ		
Mg:P ratio	1.5 :1				\prod			

Micro-Nutries	nts (mg/l)	De	efic	it	L	.Ow	T	60	od	ļ	ligi	١	Ex	ces	15	Kar	
Iron, Fs	69.9		1										7	Т		2.15	DPTA
Manganese, Mn	11.2					Ι	T	Τ	Γ	Ι		I		T		0.43	DPTA
Boron, B	1.4					1		7	Ι					Ι		0.80	Water
Zinc, Zn	16.0		1											7		2.58	EDTA
Copper, Cu	28.0		1				7								•	5.43	EDTA
Molybderum, Mo	-						Ι	Ι	Ι					Ι			
Cobalt, Co	-						Ι	Ι	I					Ι			
Iodins, I	-						Ι	Ι	I					Ι			
Selenium, Se	-						T		Ι					T			
Chloride, Cl	-	Γ	Γ			I	T	T	Γ	Γ	П	T	T	T			

Cation Exchang	s (cmol₀/kg)	Deficit	Low	Good	H	lgh	Į	Exce	:55	mg/l	K maq(kg)	BCSR
Total CEC	21.20	/ /			П	Ι	Ι	Γ				
Calcium, Ca2>	18.50									3707.7	1450.0	87.26
Magnesium, Mg ²⁺	0.54				П	Ι	Ι	Ι		64.8	-281.7	2.55
Potassium, K*	0.35					Ι	Ι			136.5	-179.4	1.65
Sodium, Na*	0.09				П	Ι	Ι			23.9	-30.7	0.42
Iron, Fe ²⁺	0.21						7			67.6	64.2	1.01
Aluminium, Al ³	1.33	/ /			П	Ι	Ι	Γ		127.5	1.7	6.26
Hydrogen, H [*]	0.00				П	Ι	Ι	Γ		0.0	-24.2	0.00
Other cations	0.18	/ / /				Ι	Ι				31.0	0.84
Ca:Mg ratio	34.3 :1											
Mg:K ratio	1.5 :1											

Soil Parent A	Material	De	ficit	1	Lov	•	6	00	d	_	łlg	h	E	XC	ess	
Soil pH	7.7									7		,				
Conductivity	2117.0 uS		- /													
Bulk Density	1.102 p/m²								•							
Infiltration ratio	0.011 sat/s						•									
Sand	22.0 %															
Silt	44.0 %		1													
Clay	34.0 %		1													0.908 Kr
Organic Carbon	1.84 %															0.092 Kr
Microbial assay	246.0 vg			Ι	Ι											FDA extract
C:N ratio	-															
N:5 ratio	-															

CATTS Soil Solutions - Provisional Fertiliser Recommendation

W Bullock & Partners

The Mill Farm, Malvern soil type Clay loam group 3 Mineral SNS index 2 103 mg/l P index (P_2O_3) 3+ 40 mg/l Footpath Field pH 7.7 O.M.(%) 3.2 Mg index (MgO) 2- 69 mg/l K index (K_2O) 2- 162 mg/l

	W Wheat feed		Fertiliser selection			cor	mposit	tion			Application rate			Nutri	ent app	lied			Comments
				N	P ₂ O ₀	140	MgO	CaO	50,	Ne ₂ O	(per hectore)	N	P ₂ O ₅	K₂O	MgO	CaO	503	Na ₂ O	
OFFICE	This soil requires organic matter & routine C	\$200 XXXX 6 XXX 6 X 6 6 8	Nutri-Bio	0.1	1.2	0	0.2	5	0.8	1.3	12000 kg/ha	12	144	4.8	24	600	96	156	
	to maintain structure. Consider using an a	OZ-1									units/ac	10	115	4	19	490	77	125	
	fertiliser to condition soil. Cover cropping with would be beneficial.	n rye or oats	25 % avail	ı						- [available in yr 1	3	36	1	6	150	24	39	
	would be beneficial.	3	The second secon	35-3	: :5		6		- 35	90-		2	29	1	5	120	19	31	ė.
	Starter fert - placement N with P. Consider foliar P as an alternative. Microbial or Manganese seed treatment	65 12/14	Phosphorous																
	NI - feeding active growth. Use an NK5	65 24-30	NK5	23		25		0 2	30	-	200 kg/ha	46		50	0 0		60		
2	compound or a Urea-Potassium blend	101								١	units/ac	37		40			48		
	N2 - canopy development	65 31-32	NK5	23	===	25	6=	-	30	ಾ	250 kg/ha	67.6		62.5			75	5=U	,
5											units/ac	46		50			60		
	N3 - grain building	65 37-39	Urea + 5	38					19		200 kg/ha	76	W				38		
											units/ac	61					30		
9	le de			9		83	TOTA	AL N	UTRI	ENT	APPLIED (kg/ha)	183	36	114	6	150	197	39	
								RB2	09 r	есонти	mendation (kg/ha)	180	20	45	1.5. V		3.3.	20.	

1220	Action	Stage	Requirement	Comments
S	Nutritional inputs for optimising plant	65 24	Phosphorous, Magnesium, Manganese, Zinc	
į	growth, environemtnal tolerance & disease	65 32	Phasphorous, Magnesium, Zinc, Sulphur	
Ž	resistance	65 39	Magnesium, Sulphur	
ķ	Foliar Nitrogen with Magnesium & Sulphur	65 69	Nitrogen, Sulphur, Magnesium	
Ė	to maintain grain protein		4	
FOL	to maintain grain protein			

Agronomist: Neil Douglas Fuller
office tel: (+44) 08453 704706
mobile: (+44) 07887 743035
e-mail: soilsolutions@msn.com
BASIS R/IE/1964/H AMTRA ACAM
FACTS PE/1864 ICM/646

SWM090

BETA

ALL RECOMMENDATIONS TO BE CONFIDMED BY SCIL ANALYSIS & CROF INSPECTION. Whilst every core is taken in the preparation of these recommendations, no liability can be accepted for unautisfactory results, as no guarantee can be given for product quality, sampling accuracy, method of application, which are beyond our direct cantral. If in doubt that conditions have changed since these recommendations were made, please contact your agreements. Always read manufacturers instructions prior to application, cultivate equipment & follow product label advice. Responsibility can not be accepted for off-label or unspecified applications. Other, the statutory information on product labels for details of environmental, operator safety, application & other requirements. Growers are responsible for ensuring that the recommendations couply with any protocols or restrictions placed on them by their customers, directors, local authority or National government.

CATTS Soil Solutions - Provisional Fertiliser Recommendation

W Bullock & Partners

The Mill Farm, Malvern soil type Clay loam group 3 Mineral 5N5 index 2 103 mg/l P index (P₂O₅) 3+ 40 mg/l

Footpath Field pH 7.7 O.M.(%) 3.2 Mg index (MgO) 2- 59 mg/l K index (K₂O) 2- 162 mg/l

	Oilseed rape		Fertiliser selection			co	mposit	tion			Application rate			Nutri	ent app	olied			Comments
				N	P ₂ O ₅	140	MgO	Ć ₆ O	50,	Ne ₂ O	(per hectore)	N	P2O5	K ₂ O	MgO	CaO	503	Na ₂ O	
DATE:	This soil requires organic matter & routine (1-18-70 XXXX - XXX - XXX-1	Nutri-Bio	0.1	1.2	0	0.2	5	0.8	1.3	12000 kg/ha	12	144	4.8	24	600	96	156	
	to maintain structure. Consider using an	207-1-206									units/ac	10	115	4	19	490	77	125	
	fertiliser to condition soil. Cover cropping with would be beneficial.	th rye or oats	25 % avail	ı		l			П		available in yr 1	3	36	1	6	150	24	39	
	would be beneficial.			35-3	- 5		6 1	. 3	- 35	35		2	2	1	5	120	19	31	·
Ī	Seedbed nutrition - Nitrogen &	drilling	Urea	46	Г				П		85 kg/ha	39.1							
	Phosphorous. DAP or Urea with foliar P as an alternative. Manganese on seed.			100							units/oc	31	0		0			5 0	
	NI - feeding active growth. Use an NKS	4-6 leaf	NK5	23		25		0 - 0	30		175 kg/ha	40.26		43.76	Ť	\vdash	62.6		
-	compound or a Urea-Potassium blend										units/ac	32		35			42		
	N2 - canopy development	stem ext	NK5	23	=	25	==	=	30		275 kg/ha	63.25	3	68.76	-		82.5	5=CK	
,											units/ac	51		55			66		
	N3 - pod building	pre flower	Urea + 5	38	- 53	H			19	33	200 kg/ha	76					38	3 (V) - = 4	
	10° =	one citratrose (A.									units/ac	61					30	- 1	
4	le d	4			- 4	- 8	TOTA	AL N	UTRI	ENT	APPLIED (kg/ha)	222	36	114	6	150	197	39	
								RB2	209 r	ecom	mendation (kg/ha)	220	25. 7	20	7.5 V			33 - 33 5	

Stage	Requirement	Comments
2 leaf	Phosphorous, Magnesium, Manganese, Zinc	
stom ext	Phasphorous, Magnesium, Zinc, Boron, Sulphur	
pre flower	Magnesium, Boron, Sulphur	
pod	Nitrogen, Sulphur, Magnesium	
	2 leaf stem ext pre flower	2 leaf Phosphorous, Magnesium, Manganese, Zinc stem ext Phosphorous, Magnesium, Zinc, Boron, Sulphur pre flower Magnesium, Boron, Sulphur

Agronomist: Neil Douglas Fuller
office tel: (+44) 08453 704706
mobile: (+44) 07887 743035
e-mail: soilsolutions@msn.com
BASIS R/IE/1964/H AMTRA AGEN
FACTS FE/1854 ICM/646
SWM090 BETA

ALL RECOMMENDATIONS TO BE CONFIDMED BY SCIL ANALYSIS & CROF INSPECTION. Whilst every core is taken in the preparation of these recommendations, no liability can be accepted for unautisfactory results, as no guarantee can be given for product quality, sampling accuracy, method of application, which are beyond our direct cantral. If in doubt that conditions have changed since these recommendations were made, please contact your agreements. Always read manufacturers instructions prior to application, cultivate equipment & follow product label advice. Responsibility can not be accepted for off-label or unspecified applications. Other, the statutory information on product labels for details of environmental, operator safety, application & other requirements. Growers are responsible for ensuring that the recommendations couply with any protocols or restrictions placed on them by their customers, directors, local authority or National government.

The Mill Farm, Malvern

Prescription Nutrition®

Dedicated Analysis for Integrated Soil, Plant & Animal Nutrient Management

Advisor Steve Townsend

Sample Ref Drive Field

e-mail: soilsolutions@msn.com

Agrimax

arable Soil class 3 Mineral arable texture Clay

Stones <5% Soil OM 3.3% Soil pH (water) 6.4 Soil pH (salt) 5.8

				_		_			_		_	_				
Major Nutrie	nts (mg/l)	Def	icit	١	Low	l	60	od	ŀ	Hgl	h	8	KC	ess	Kar	Elemental (mg/l)
Phosphate, P ₂ O ₅	9.0 0				П	T	Τ	Γ				П		Γ	0.50	3.9 P
Potassium, K ₂ O	114.0 1+					T	Ι								0.58	94.6 K
Magnesium, MgO	672.0 7					7								7	6.85	405.2 Mg
Calcium, CaO	4054.1 3				7		7							Γ	0.86	2897.5 Ca
Sodium, Na ₂ O	27.1 2				•	Τ	Τ								0.71	20.1 Na
Sulphate, 503	24.0 1				•	Τ	Τ								0.55	9.6 S
Nitrogen, NH _{4-BIR}	20.6 2					Ι	Ι								0.33	103.6 N
Nitrate, NO ₃		П	Τ	Π	П	Τ	Τ									
K:Mg ratio	0.2 :1		Т	Γ	Π	T	Τ							Γ		
Mg:P ratio	74.7 :1					1								•		

Micro-Nutries	nts (mg/l)	De	fic	İŧ	L	.ow	I	6	ood	Ī	Hlg	h	Е	xce	:55	Kar	
Iron, Fs	141.0		7				į								•	4.55	DPTA
Manganese, Mn	25.1				J				7	Τ	Γ	Γ			П	0.87	DPTA
Boron, B	1.6					7		7	T	T	Γ					0.82	Water
Zinc, Zn	2.5					Т	T	T	Τ	Τ	Γ					0.36	EDTA
Copper, Cu	10.5		7							7		7				1.75	EDTA
Molybdanum, Mo	-					Τ	I	T	Τ	Γ	Γ						
Cobalt, Co	•					Ι	I	Ι	Ι	Ι	Γ						
Iodins, I	•					Ι	Ι	Ι	Ι	Ι	Γ						
Selenium, Se	-					T	Ī	T	T	Γ	Γ						
Chlorids, Cl	-	Γ	Γ			T	Ī	T	T	Γ	Γ	Γ					

Cation Exchang	e (cmol₀/kg)	Deficit	Low	Good	Н	gh	Ε	xces	s mg/l	K _{maq(kg)}	BCSR
Total CEC	31.30				7	Ι	Γ	П			
Calcium, Ca2+	19.70				Π	Ι	Γ	П	3946.4	-2281.2	62.94
Magnesium, Mg ²⁺	4.54								544.8	745.4	14.50
Potassium, K ⁺	0.25				\prod	Ι		П	97.5	-335.0	0.80
Sodium, Na*	0.11				П	Ι	Γ	П	28.6	-73.7	0.35
Iron, Fe ² *	0.50								159.0	220.6	1.61
Aluminium, Al ³	3.25				7	Ι	Γ	П	311.6	324.4	10.37
Hydrogen, H*	2.82				7	Ι	Γ	П	28.5	35.7	9.00
Other cations	0.13				\prod	Ι		П		-8.6	0.42
Ca:Mg ratio	4.3 :1							\prod			
Mg:K ratio	18.2 :1			,					7		

Soil Parent Material			Deficit			Low Good			d	High			Excess				
Soil pH	6.4				7				•								
Conductivity	2104.0 uS																
Bulk Density	4.148 p/m3		7					7								7	
Infiltration ratio	0.002 ma/s																
Sand	12.0 %																
Silt	42.0 %			7						•							
Clay	46.0 %		7								1		•				0.944 <i>K</i> r
Organic Carbon	1.89 %					1		•									0.056 Kr
Microbial assay	211.0 vg																FDA extract
C:N ratio	-																
N:5 ratio	-																

CATTS Soil Solutions - Provisional Fertiliser Recommendation

W Bullock & Partners

The Mill Farm, Malvern soil type Clay group 3 Mineral 5N5 index 2 104 mg/l P index (P₂O₅) 0 9 mg/l

Drive Field pH 6.4 O.M.(%) 3.3 Mg index (MgO) 7 672 mg/l K index (K₂O) 1+ 114 mg/l

	W Wheat feed		Fertiliser selection	l		co	mposit	tion			Application rate	Nutrient applied						Comments	
				P ₂ O ₀	140	MgO	ĆaO	50,	Ne ₀ O	(per hectore)	N	P ₂ O ₅	K ₂ O	MgO	CaO	503	Na ₂ O		
BUTLDB		This soil requires organic matter & routine Calcium inputs			- 5	Г	3 3	60	145	77	4000 kg/ha	- 15	7/1	8 16	771	2400	25	9 15	
	to maintain structure. Consider using an organic-based fertiliser to condition soil. Cover cropping with rye or oats would be beneficial.			ı	ı						units/ac					1920			
			45 % avail								available in yr 1					1080			
				: - 3	_	ᆫ	6	8	- 95	35		3 8	8 7			864	18	3 22	
	Starter fert - placement N with P.	65 12/14	MAP	11	52						100 kg/ha	11	52						
	Consider foliar P as an alternative. Microbial or Manganese seed treatment										units/ac	9	42						
ı	NI - feeding active growth. Use an NK5	65 24-30	NK5	23		25		0 2	30	-	200 kg/ha	46		50			60	-	
-	compound or a Urea-Potassium bland	100									units/ac	37		40			48		
	N2 - canopy development	65 31-32	NK5	23	==	25	i=	==	30	©=	250 kg/ha	67.6	·	62.5	-		76	5=0k	
	•										units/ac	46		50			60		
	N3 - grain building	65 37-39	Urea + 5	38		\vdash			19	W	175 kg/ha	66.5					33.3		
											units/ac	53	$\langle - \rangle$				27		
		y.		9 7		83	TOTA	AL N	UTRI	ENT	APPLIED (kg/ha)	181	52	113	0	1080	168	0	
								RB2	09 r	ecom	mendation (kg/ha)	180	110	70	25. 0		3.3	23 22	

200	Action	Stage	Requirement	Comments	1
Š	Nutritional inputs for optimising plant	65 24	Phosphorous, Magnesium, Manganese, Zinc		1
į	growth, environemtnal tolerance & disease	65 32	Phasphorous, Magnesium, Zinc, Sulphur	Ī	ı
ž	resistance	65 39	Magnesium, Sulphur		ı
ş	Foliar Nitrogen with Magnesium & Sulphur	65 69	Nitrogen, Sulphur, Magnesium		1
j	to maintain grain protein		4	1	ı
2			†	1	١

Agronomist: Neil Douglas Fuller
office tel: (+44) 08453 704706
mobile: (+44) 07887 743035
e-mail: soilsolutions@msn.com
BASIS R/IE/1964/H AMTRA ACEN
FACTS PE/1654 ICM/646

SWM090

BETA

ALL RECOMMENDATIONS TO BE CONFIDMED BY SCIL ANALYSIS & CROF INSPECTION. Whilst every core is taken in the preparation of these recommendations, no liability can be accepted for unautisfactory results, as no guarantee can be given for product quality, sampling accuracy, method of application, which are beyond our direct cantral. If in doubt that conditions have changed since these recommendations were made, please contact your agreements. Always read manufacturers instructions prior to application, cultivate equipment & follow product label advice. Responsibility can not be accepted for off-label or unspecified applications. Other, the statutory information on product labels for details of environmental, operator safety, application & other requirements. Growers are responsible for ensuring that the recommendations couply with any protocols or restrictions placed on them by their customers, directors, local authority or National government.

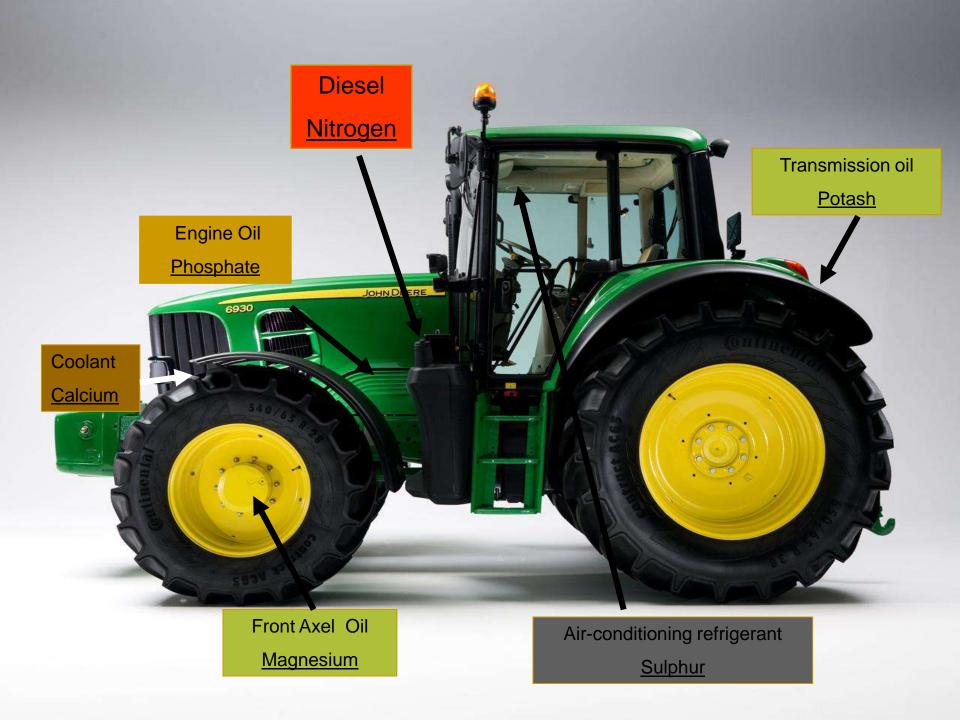
CATTS Soil Solutions - Provisional Fertiliser Recommendation

W Bullock & Partners

The Mill Farm, Malvern soil type Clay group 3 Mineral 5N5 index 2 104 mg/l P index (P₂O₅) 0 9 mg/l

Drive Field pH 6.4 O.M.(%) 3.3 Mg index (MgO) 7 672 mg/l K index (K₂O) 1+ 114 mg/l

	Oilseed rape		Fertiliser selection	l		co	mposit	tion			Application rate	Nutrient applied						Comments	
				N	PyOn KyO		MgO	Ć ₆ O	50,	Ne ₂ O	(per hectore)	N	P2O5	K ₂ O	MgO	CaO	503	Na ₂ O	
3	This soil requires organic matter & routine (1-18-70 XXXX - XXX - XXX-1	Nutri-Bio	0.1	1.2	0	0.2	5	0.8	1.3	12000 kg/ha	12	144	4.8	24	600	96	156	
	to maintain structure. Consider using an organic-based fertilliser to condition soil. Cover cropping with rye or oats					1	П				units/ac 10 available in yr 1 3	10	115	4	19	490	77	125	
			25 % avail	ı		l						3	36	1	6	150	24	39	
	WOULD DO DONOTICALLY.			35-3			6 1	. 3	- 35	35		2	29	1	5	120	19	31	ý.
Pho an i	Seedbed nutrition - Nitrogen &	drilling	MAP	11	52	Г			Г		100 kg/ha	11	62						
	Phosphorous. DAP or Urea with foliar P as an alternative. Manganese on seed.				***						units/oc	9	42					3-0	
	NI - feeding active growth. Use an NKS	4-6 leaf	NK5	23		25		0 8	30		175 kg/ha	40.26		43.76	9	\vdash	62.6		
-	compound or a Urea-Potassium blend					l			П	П	units/oc	32		35			42		
-	N2 - canopy development	stem ext	NK5	23	-	25	i5=5	=	30		275 kg/ha	63.25	5===	68.76	9		82.5	6=0 k	
											units/ac	51		55			66		
N3 - pod building	N3 - pod building	pre flower	Urea + 5	38	5	\vdash			19	100	200 kg/ha	76			W.		38		
	100										units/ac	61					30		
9	le de	- 4				83	TOTA	AL N	UTRI	ENT	APPLIED (kg/ha)	194	88	114	6	150	197	39	
								RB2	09 r	ecom	mendation (kg/ha)	220	100	65	3.5. V		2.2	A 20	


Stage	Requirement	Comments
2 leaf	Phosphorous, Magnesium, Manganese, Zinc	
stem ext	Phosphorous, Magnesium, Zinc, Boron, Sulphur	
pre flower	Magnasium, Boron, Sulphur	
pod	Nitrogen, Sulphur, Magnesium	
	2 leaf stem ext pre flower	2 leaf Phosphorous, Magnesium, Manganese, Zinc stem ext Phosphorous, Magnesium, Zinc, Boron, Sulphur pre flower Magnesium, Boron, Sulphur

Agronomist: Neil Douglos Fuller
office tel: (+44) 08453 704706
mobile: (+44) 07887 743035
e-mail: soilsolutions@msn.com
BASIS R/IE/1964/H AMTRA ACAM
FACTS PE/1664 ICM/646

SWM090

BETA

ALL RECOMMENDATIONS TO BE CONFIDMED BY SCIL ANALYSIS & CROF INSPECTION. Whilst every core is taken in the preparation of these recommendations, no liability can be accepted for unautisfactory results, as no guarantee can be given for product quality, sampling accuracy, method of application, which are beyond our direct cantral. If in doubt that conditions have changed since these recommendations were made, please contact your agreements. Always read manufacturers instructions prior to application, cultivate equipment & follow product label advice. Responsibility can not be accepted for off-label or unspecified applications. Other, the statutory information on product labels for details of environmental, operator safety, application & other requirements. Growers are responsible for ensuring that the recommendations couply with any protocols or restrictions placed on them by their customers, directors, local authority or National government.

Solution:

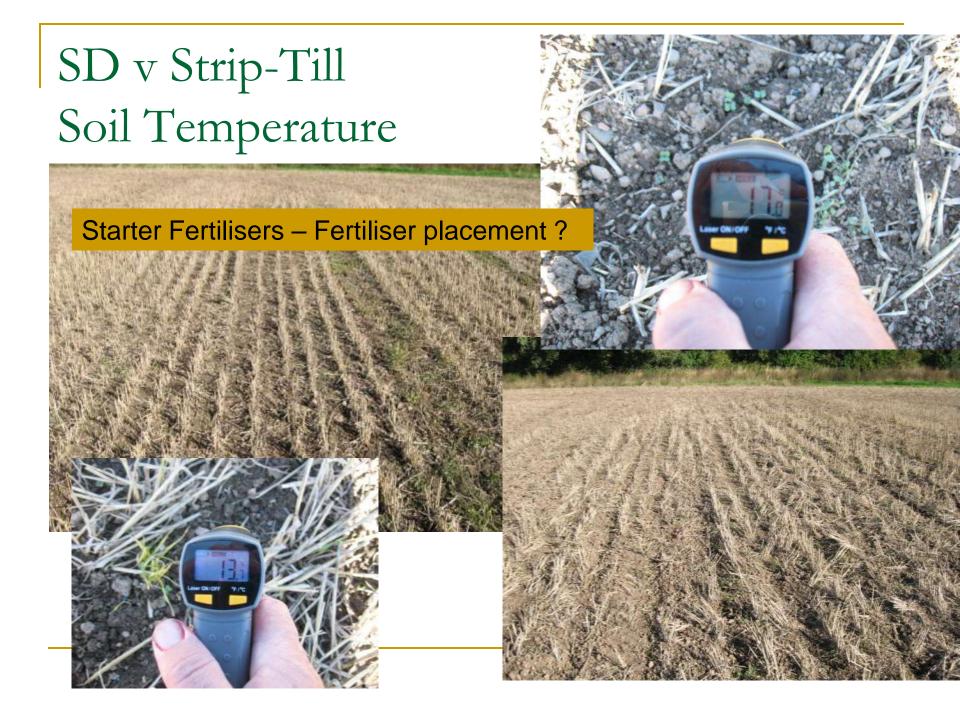
to attempt to rebalance Calcium/Magnesium ratio

- Compost Organic Matter
- Gypse (Calcium Sulphate 19%-21%)@ 5tons/ha
- <u>Limex</u> Calcium, phosphate and sulphur @ 5 tons/ha

Maxi-phi products

W	inter	Wh	eat
			Cul

Product & rate		Timing	Cost/ha
Maxi-phi Manganese	1.0 l/ha		£2.15
Maxi-phi Zinc	+ 1.0 l/ha		£2.56
Maxi-phi Hi-Mag	+ 1.0 l/ha		£1.50
Activate MP	+ 1.0 l/ha		£4.42
Maxi-phi Manganese	0.5 l/ha		£1.08
Maxi-phi Hi-Mag	+ 2.0 l/ha		£3.00
Maxi-phi Sulphur	+ 2.0 l/ha		£5.20
Activate MP	+ 0.5 l/ha		£2.21
Maxi-phi Manganese	0.5 l/ha		£1.08
Maxi-phi Hi-Mag	+ 2.0 l/ha		£3.00
Maxi-phi Sulphur	+ 2.0 l/ha		£5.20
Activate MP	+ 0.5 l/ha		£2.21


Total

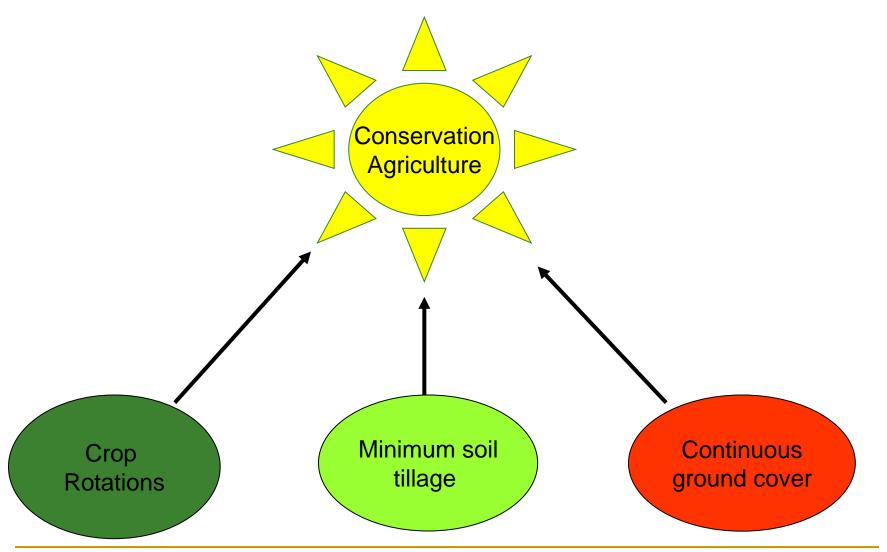
£33.60

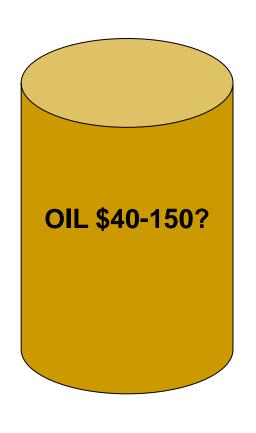
Grain Quality 2010 harvest

Field Code	Variety	Treatment	Moisture	Specific wt	Protein	Hagberg	Estimated yield
OH1	Solstice	Maxi-phi	14.60	79.5 kg/hl	14.01	349	7.5 ton/ha
OH2	Solstice	Conventional	15.10	79.7 kg/hl	13.95	300	7.5 ton/ha
C3	Solstice	Max-phi	14.60	81.8 kg/hl	13.86	393	7.5 ton/ha
C4	Solstice	Conventional	14.80	79.1 kg/hl	12.80	313	7.5 ton/ha
F5	Solstice	Maxi-phi	14.90	80.2 kg/hl	13.01	353	8.75 ton/ha
F6	Solstice	Conventional	15.20	80.9 kg/hl	10.47	342	8.75 ton/ha

Summary

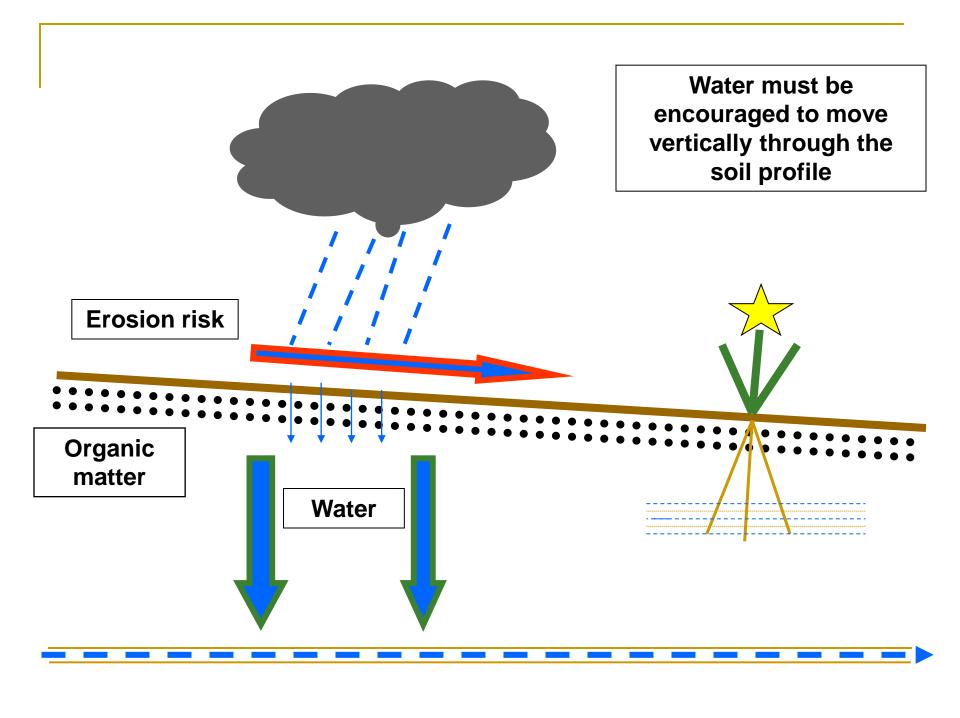
- Rotation
- Residue management
- Soil type/structure/drainage
- Weed control
- Choice of varieties
- Drill early
- Check soil fertility status
- Monitor and control slugs





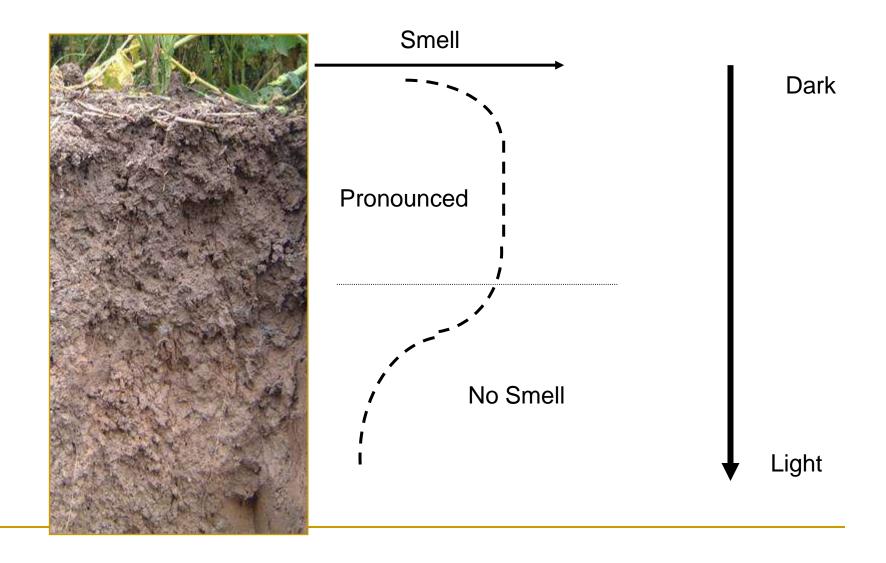
Conservation Agriculture

Financial pressures are now even greater

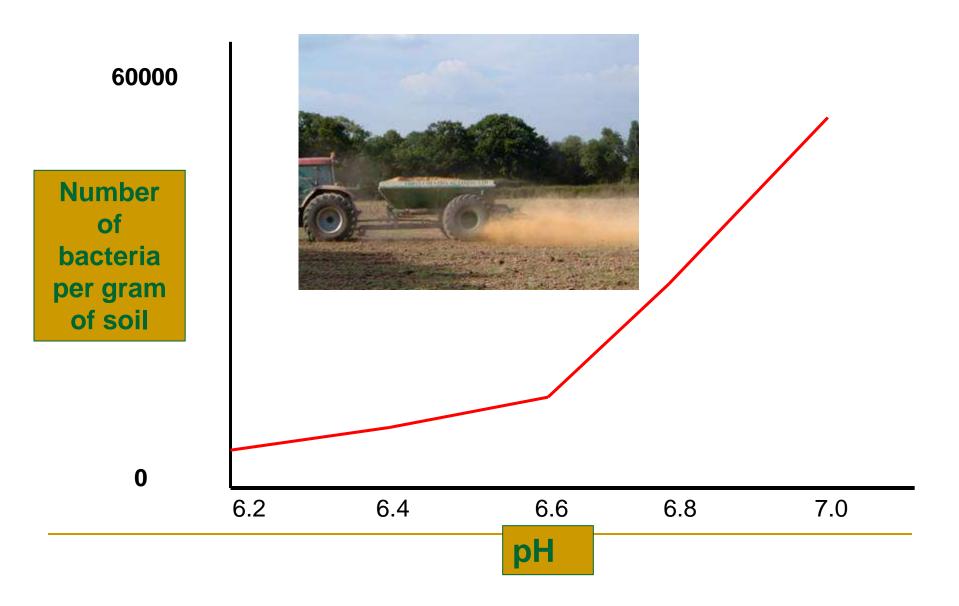

- Fertiliser
- Fuel
- Transport
- Machinery
- Rents
- Labour
- Interest rates/loan repayments

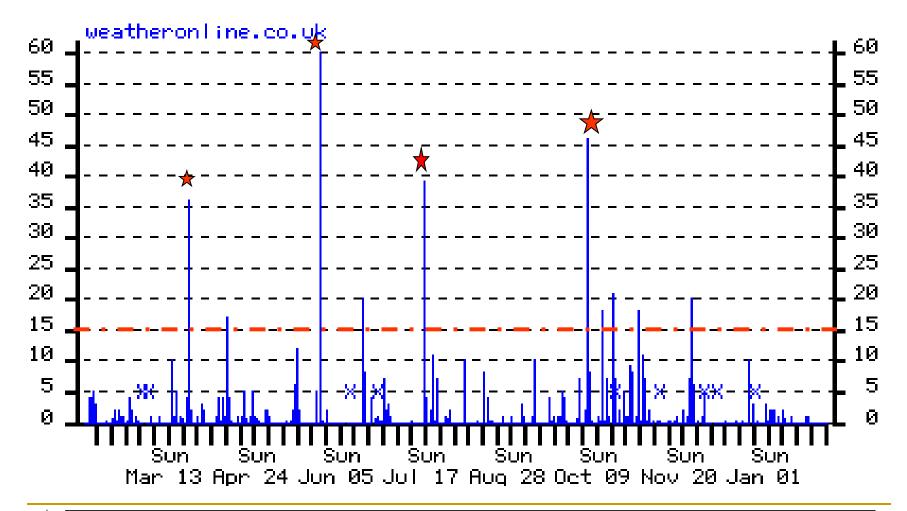
Who has actually Banked £200/ton for wheat in the so called good times?

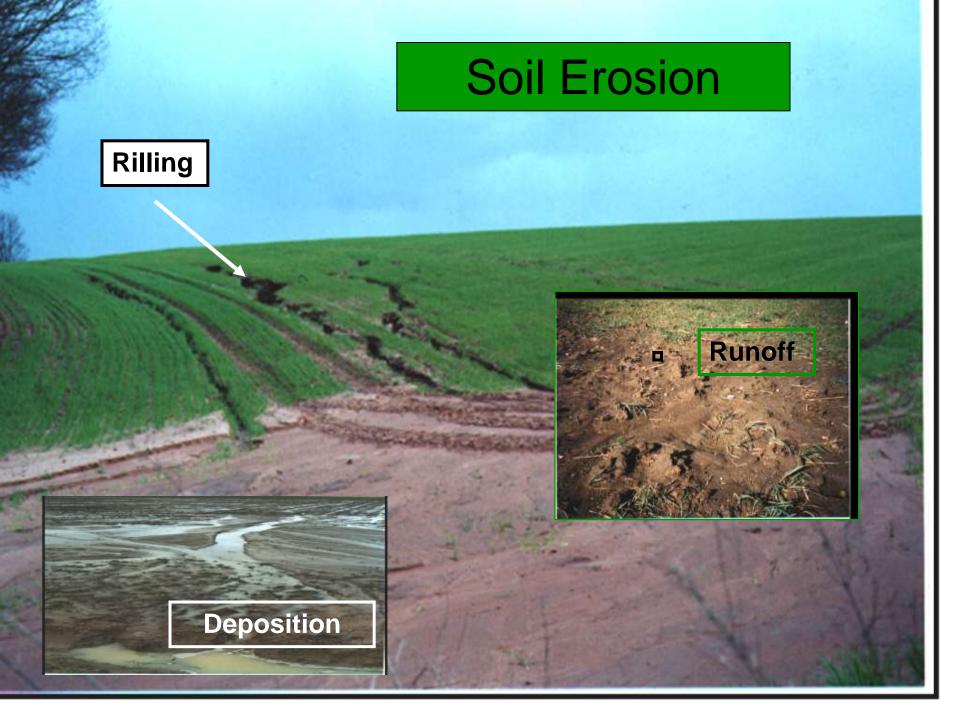
Drainage water – how clean is yours?



Evolution of natural soil structure




Organic Matter - Soil Smell/Colour


The influence of pH on soil biological activity

Rainfall Great Malvern 2005/06

Naturally soils are colonised by restructuring and fertility building plants

Always wait for weeds and volunteers to emerge

Grass weeds growing in crop

Slug control

- Monitor immediately after harvest
- Apply pellets pre-drilling if slug problem
- Monitor until crop fully emerged
- Always apply pellets to OSR at emergence
- Slug problem reduced after 3-4 years

Min-till – it doesn't work.....?

Stale seedbed Triggers -

Weed and volunteer germination

Breakdown of crop residues

Unless time is on your side.....

Min-till promotes germination of weeds & volunteers

Poor crop establishment due to N lock-up

Long stubble

 Less material passing through combine - reduced fuel consumption

Straw remains evenly spread

 Residue takes longer to breakdown reducing Nitrogen tie-up (OSR)

Provides soil cover

OSR direct drilled with disc drill

Poor establishment due to

- Hair-pinning
- Slugs
- Smeared and compacted slots
- Water-logging

OSR in Chopped Straw

Winter beans direct into undisturbed wheat stubble and chopped straw

Roots – stabilise soil structure

Volunteer OSR as a cover-crop

- Inexpensive
- Maintains soil structure
- Re-cycles nutrients
- Adds organic matter
- Maintains soil moisture
- Possible slug problems
- High rates of glyphosate required to destroy cover
- Weed control?

Crops ready for harvest August 2007/08

Wet straw – severe wheelings

Worse in 08 than 07

Cultivation necessary to remove compaction and level soil surface

January 2009!

The most cost effective piece of cultivation machinery!

