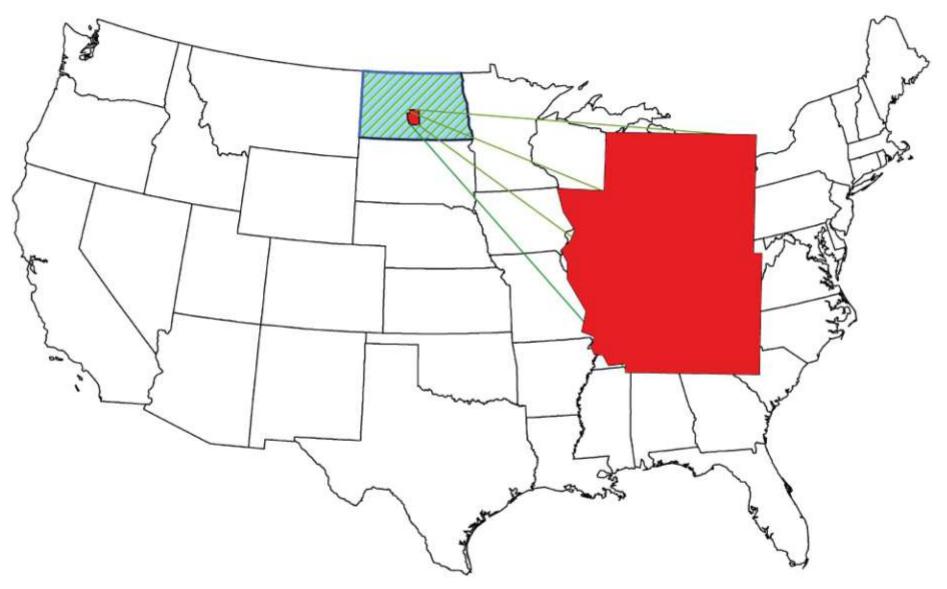

Brown's Ranch Home of Sustainable Ranching www.sustainableranching.com


Ranch Goal Sustainability Through Soil Health

Harvest The Sunlight, Feed The Soil Tie the Grazing and Cropping Systems Together

Burleigh County, North Dakota

BISMARCK WSFO AP, NORTH DAKOTA (320819)

Period of Record Monthly Climate Summary

Period of Record : 7/ 1/1948 to 12/31/2007

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu al
Average Max. Temperature (F)	20.1	26.6	38.2	55.4	68.1	77.2	84.6	83.4	71.8	58.6	39.4	26.2	54.1
Average Min. Temperature (F)	-1.5	5.5	17.3	30.7	42.4	51.9	57.0	54.8	44.0	32.4	18.2	5.4	29.8
Average Total Precipitation (in.)	0.47	0.47	0.78	1.39	2.33	2.94	2.44	2.00	1.40	1.02	0.58	0.46	16.28
Average Total SnowFall (in.)	7.9	7.2	8.5	3.6	0.8	0.0	0.0	0.0	0.1	1.6	6.5	7.6	43.8
Average Snow Depth (in.)	4	4	2	0	0	0	0	0	0	0	1	2	1

Old System

- Tillage high inputs
- Low Infiltration 0.4 inches the 1st hour and .25 inches the 2nd hour
- Low SOM <2%
- Low Fertility
- Low Crop Diversity

- 40 year history of summer fallow, wheat and some flax
- Season long grazing on the native rangeland

Present System 4,430 Acres of Cropland, & Rangeland

- Soil Health Based
- Bought a no-till drill in 1993
- Lost the crop to hail in 95, 96 & 98 with drought in 97 "Best thing that ever happened"
- SOM upward trend
- Cropland Mimics Native Rangeland with a live root at all times
- Rangeland pastures are grazed < 5 days per year

- Cover Crops are the bridge between the rangeland & cropland
- Lower inputs over time
- Reduced herbicide by 75% - Some fields have no herbicide for 3 years
- Reduced commercial fertilizer by 90%
- 2007 cost of production for corn \$1.18 per bushel
- Why can Gabe lower his cost?

No-till Seeding for 16 years

Diversity in the Cropping System

The Answer is to Imitate Native Rangeland

Diversity - Crop Types

Warm Season Broadleaf

Alfalfa **Buckwheat** Chick Pea Amaranth Cowpea Soybean Safflower Sunflower

Warm Season Grass Corn Proso Millet **Pearl Millet** Sorghum Sudan

Diversity - Crop Types.

Cool Season Grass

Barley

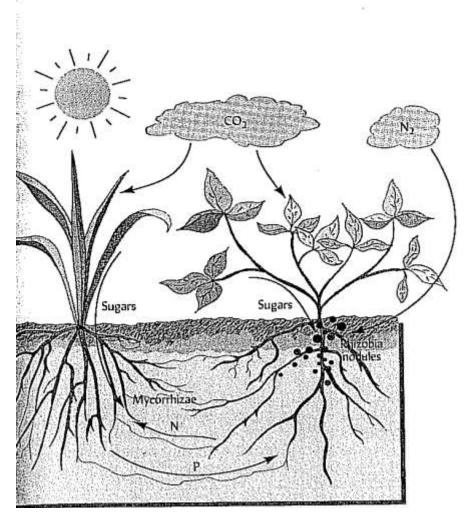
Durum Wheat

Oat

Spring Wheat Winter Rye

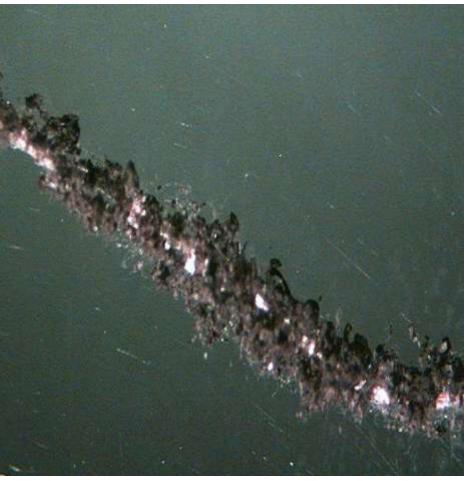
Winter Triticale

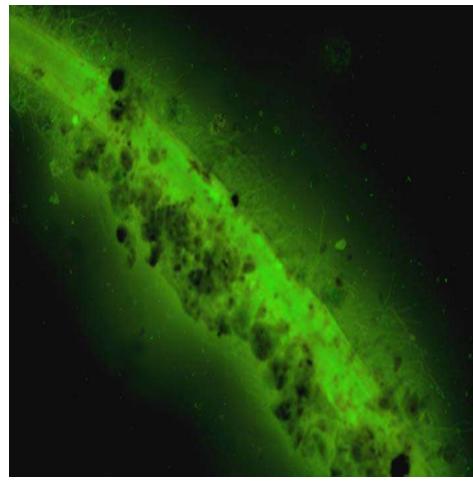
Winter Wheat


Cool Season Broadleaf

Canola Turnip Crambe Pasja Flax Pea Lentils Lupin Radish Mustard Forage Canola **Red Clover** Sweet Clover

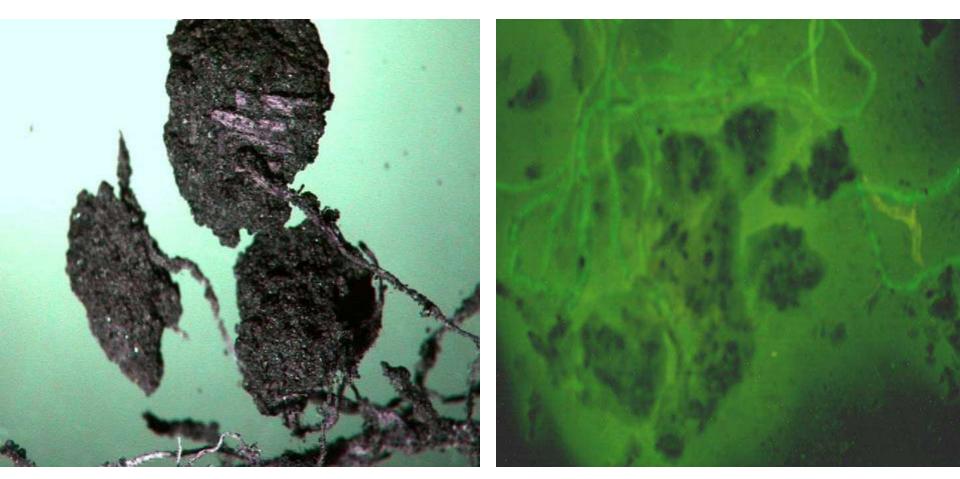
Diversity Above & Below Ground Feeding the Soil Biology a Balanced Diet


Plants Interacting with Mycorrhizal Fungi


- Assists with P uptake from the soil
- Moves P from the non-legume plant to the legume plant
- Moves N from the legume plant to the non-legume plant

The Nature and Property of Soils, Brady and Weil

Soil Aggregates on a millet root. Burleigh County


Glomalin and hyphae show well with a green color in the lab.

Dr. Kris Nichols, Microbiologist, ARS, Mandan, ND

Enlarged Soil Aggregates

Glomalin and hypae

Dr. Kris Nichols, Microbiologist, ARS, Mandan, ND

Tracking Organic Matter...

Upward Trend

Beginning 1.7 to 2% Present 3.7 to 4.3%

Gabe's revolving nutrient bank account.

- 1.0% OM = 10,000 lbs Carbon, 1,000 lbs Nitrogen, 100 lbs Phosphorous, and 100 lbs of Sulfur.
- Mineralization Rate = 2-3% from Organic N to Inorganic N.
- Resulting in 20 to 30 lbs of useable N per acre.

Soil Organic Matter & Available Water Capacity Inches of Water/One Foot of Soil

Percent SOM	Sand	Silt Loam	Silty Clay Loam
1	1.0	1.9	1.4
2	1.4	2.4	1.8
3	1.7	2.9	2.2
4	2.1	3.5	2.6
5	2.5	4.0	3.0

Berman Hudson Journal Soil and Water Conservation 49(2) 189-194 March – April 1994 Summarized by: Dr. Mark Liebig, ARS, Mandan, ND Hal Weiser, Soil Scientist, NRCS, Bismarck, ND

Nodules Fixing Nitrogen

Improving Organic Matter Continual Live Root 24/7

Past Inputs...

Present - Low Input Corn Crop

Tissue Sample *Taken from Non-Fertilized Corn*

Results For : GABE BROWN Location : Sample ID : CORN

WARD Laboratories, Inc

Plant Type : Com Stage : Tassel

	Result	Sufficiency Levels				
	Dry Basis	Deficient	Low	Sufficient	High	
Nitrogen ,% N	3.05		,			
Phosphorus, % P	0.42			-		
Potassium, % K	2.52					
Calcium, % Ca	0.43					
Magnesium, % Mg	0.22					
Sultur, % S	0.33		1	*	1	
Zinc, ppm Zn	25					
iron, ppm Fe	143					
Manganese, ppm Mn	67					
Copper, ppm Cu	11.8					

2008 Yield Data

- Fertilized Corn
 - 100 # 46-0-0
 - 20 ton/ac manure (fall '07)
 - 114.6 bu/ac

Non-fertilized Corn

- No commercial fertility
- 20 ton/ac manure (fall '07)
- 114.8 bu/ac

No Commercial Fertilizer or Manure Farm Average Yield is 127 Bushels/Acre August 2009

Early Soil Health

 Thomas Jefferson in the year 1794 was using vetch, turnips, peas and clover as cover crops to improve soil health on his Virginia plantation

– Thomas Jefferson's Garden Book, 1776-1824

- Why did we get away from this?
- Applying good agronomic principles equals lower required inputs for the same effect

Some of Gabe's Crops

- Alfalfa
- Pea
- Corn
- Sunflower
- Barley
- Turnip
- Radish
- Lentils
- Hairy Vetch
- Wheat
- Pasja

- Red Clover
- Sweet Clover
- Sugar Beets
- Buckwheat
- Oats
- Cowpea
- Millet
- Sorghum
- Sudan
- Canola

Corn and Hairy Vetch Maximum Sunlight Harvest

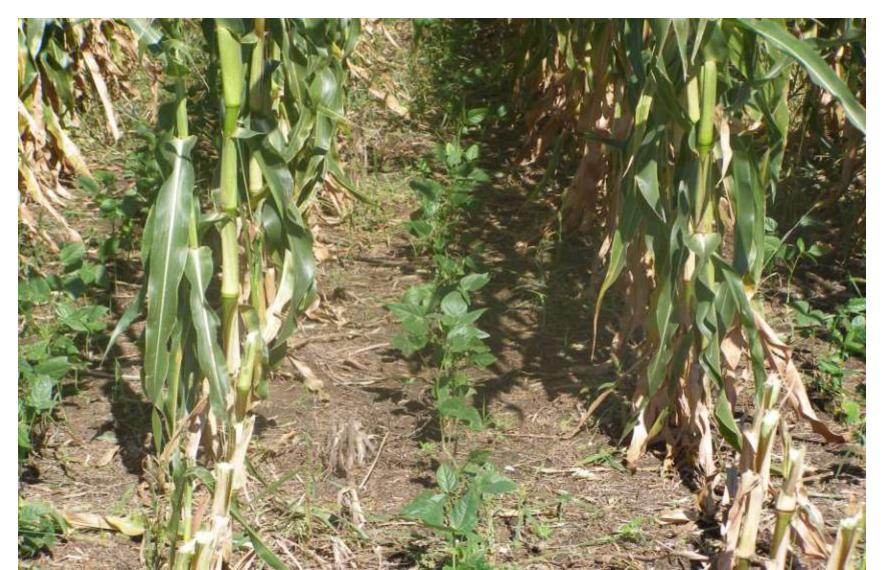
No Commercial Fertilizer

Triticale and Vetch Combination July 16, 2009

Harvesting Triticale and Hairy Vetch. August 30, 2009

Sunflower and Hairy Vetch 2240 lbs /ac - no Fertilizer Applied

Red Millet and Red Clover August 2009 No Chemical or Fertilizer


7 Row Interseeder

Corn and Cowpea Seeded after the last Herbicide Application

Warm Season Grass and a Warm Season Broadleaf



Cowpea Warm Season Broadleaf

- Fixes nitrogen
- Adds diversity
- Nectar ports attract beneficial insects

Forage Barley and Red Clover

Cool Season Grass and a Cool Season Broadleaf

Red Clover Regrowth

Cowpea & Sudan Grass

Cowpea & Millet

Pea and Hairy Vetch Require the same Inoculant

Winter Triticale 75 lbs Hairy Vetch 20 lbs Sweet Clover 1 lb Red Clover 1 lb Fall Seeded Winter Triticale – fibrous root Hairy Vetch – shallow rooted legume Red Clover – medium rooted legume Sweet Clover – deep rooted legume

"Don't complain about input costs – do something about it. Diversify" Gabe Brown

Cool Season Mixture Seeded end of April 2009 No Commercial Fertilizer Applied

- Oat 45 lbs
- Forage Pea 30 lbs
- Hairy Vetch 10 lbs
- Turnip 1 lb
- Radish 1 lb
- Red Clover 1 lb

Harvesting the Cool Season Mixture August 2009 Chopped & Yielded 14 ton/ac

Warm Season Cocktail

- Cowpea 10 lbs
- Soybean 20 lbs
- Pearl Millet 4 lbs
- Proso Millet 4 lbs
- Radish 2 lbs
- Turnip 1 lb
- Sunflower 10 lbs
- Buckwheat 10 lbs

Foreground – Chopped Cowpea/Sudan Background – Grazed WS Cocktail

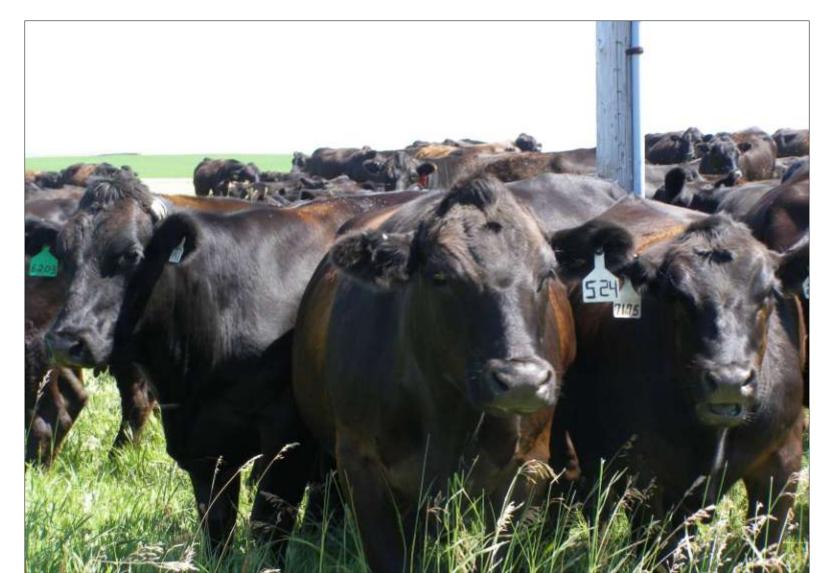
Diversity attracts Diversity Ringneck Pheasant, Sharptail Grouse, Hungarian Partridge, Canada Geese, Duck, Whitetail Deer, Song Bird, Raptors, Mink, Weasel, Raccoons, Coyote, Fox and more Left photo taken on June 16, 2009 showing Corn planted into Triticale/Vetch stubble. 12.2" rain on June 15th. Right Photo taken on July 1, 2009. Residue managers were not used.

Same Field Brown's Ranch

Left photo taken on June 16, 2009 showing Corn planted into cover crop residue. Right photo taken on July 1, 2009. Rapid residue decomposition. Residue managers were not used.

Same Field Brown's Ranch

Nutrient Cycling Carbon/Nitrogen Ratios


 Soil Microorganisms, Bacteria * 	5/1
 SOM, Mollisol Ap horizon * 	11/1
 Young Alfalfa Hay * 	13/1
 Rotted barnyard manure * 	20/1
 Mature Alfalfa Hay * 	25/1
Protozoa **	30/1
Corn Stover *	57/1
 Wheat Straw * 	80/1
 Newspaper * 	120/1
 Deciduous Wood ** 	300/1
Source:	
*The Nature and Properties of Soils, fourteenth Edition.	
Nyle C. Brady and Ray R. Weil	

** Elaine R. Ingham, Soil Food Web

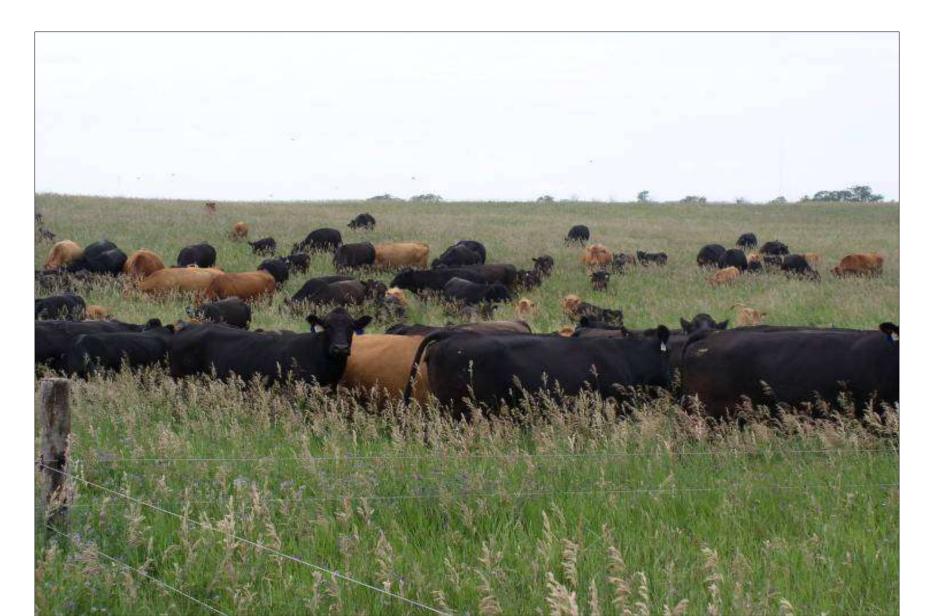
Recovery Based Grazing System

Cattle Herd Consists of 250 Gelbvieh and Angus Cows plus Yearlings

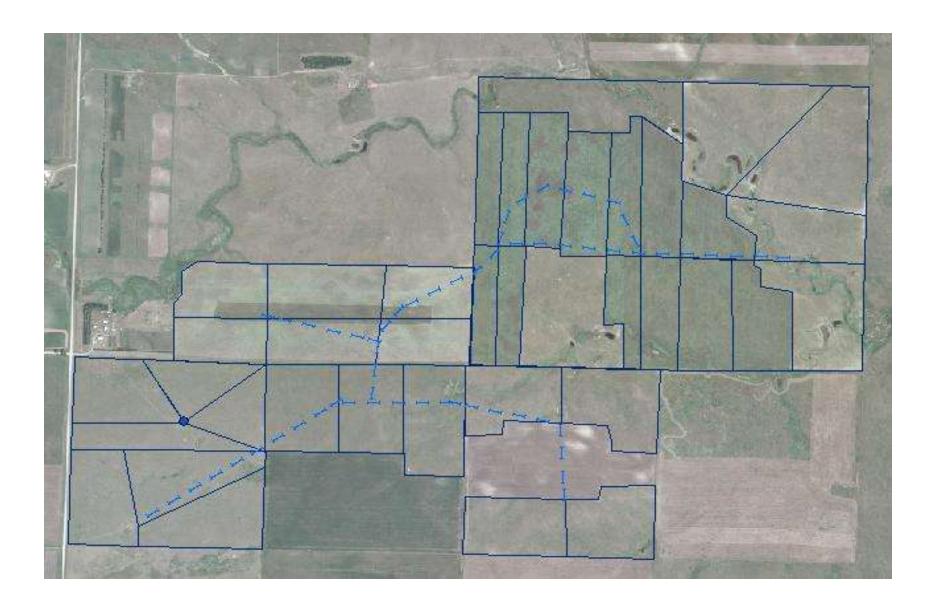
Before Gabe Brown 1120 acres

CRE

A


CROPLAND AND

1


After Gabe Brown 1120 acres Recovery Based Grazing

A

Ultra-High Stock Density

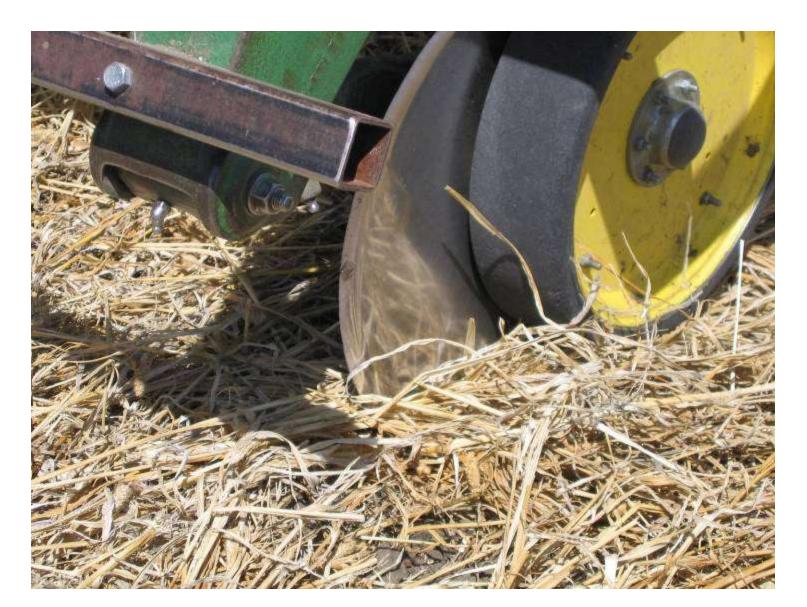
Strip Grazing for Soil Health

Grazing Tall - Improving Soil Health by adding Carbon

Extending the Grazing Season with Cover Crops

Mechanical Harvest

0


Livestock Integration

Spring 2008 Planting into grazed Cowpea/Millet Invisible Planting

No-Till Planting Through Heavy Residue

Trash Whippers Lifted

Uniform emergence through heavy residue

Does harvest method affect crop response? Animal vs. Mechanical

Harvesting Cover Crops

Grazing 2007

- 91 bu/ac Corn ('08)
- 1 Herbicide Application
- Value of additional nutrients from manure?

Chopping 2007

- 68 bu/ac Corn ('08)
- 2 Herbicide
 Applications
- Value of nutrients hauled away?

A 4 Week Supply Based on 3% of Body Weight

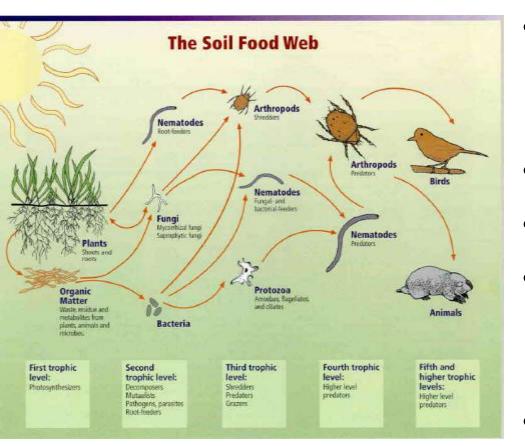
Winter of 08-09

Bale Grazing Results Tame Pastures

Pasture With Bale Grazing Pasture Without Bale Grazing

8573 lbs/ac 11.95% Crude Protein 59.43% TDN 2559 lbs/ac 7.96% Crude Protein 60.70% TDN

Where Do We Go Next...



Cropping System Overview

- Phase One: Start No-till Cropping Systems and Grazing Systems. Enhancing the home and food supply for the soil biology.
- **Phase Two:** Add Cover Crops to integrate the Cropping and Grazing Systems together. Further strengthening the crop diversity, habitat and available food supply.
- **Phase Three:** begin to reduce pesticides and commercial fertilizer in the long term systems.
- Phase Four: Complete two years of Soil Food Web soil tests. Evaluate and apply the Soil Food Web technology to further reduce and/or eliminate pesticides and commercial fertilizer.

The Soil Food Web Restoring Degraded Soils

- The soil is alive and requires a home and food. How do we....
- have less disturbance
- have more diversity
- keep living roots in the soil as much as possible
- keep the soil covered

1st Year No-Till

Soil Foodweb Analysis

Report prepare Burleigh Co. Soi Vicki Bailey 1511 E. Interstat Bismarck, ND 5 (701) 250-4363 vicki.bailey@nd	I Conservation te Avenue 58503-0560 US	Sa Unio Invoice N	t Sent: 07/29/20 mple#: 01-10098 que ID: Plant: Wheat umber: 8357 ceived: 07/14/20	10			Local Advisor:	of this report please or regional lab Soil Foodweb, <u>info@soilfoodw</u> (541) 752-5066	Inc veb.com	
Organism Biomass Data	Dry Weight	Active Bacterial (µg/g)	Total Bacterial (µg/g)	Active Total Hyphal Fungal Fungal Diamete (µg/g) (µg/g) (µm)			Nematodes per Gram of Soil Identification to genus			
	0.850 In Good Range	a source of the second	2243 Excellent	7.02 Low	205 Good	2.5	Bacterial Feeders Acrobeles Acrobeloides Cephalobus Eucephalobus Panagrolaimus		0.13 0.04	
Expected Low Range High	0.45 0.85	15 25	100 300	15 25	100 300				0.18 0.04 0.04	
	Protozoa Numbers/g Flagellates Amoebae Ci		Ciliates	Total Nematodes #/g	Percent Mycorrhizal Colonization ENDO ECTO		Rhabditidae Fungal Feeders Eudorylaimus		0.27 0.04	
Results Comments	5020 Low	2520 Low	32 Low	1.98 Low	2% Low	0% Low	Mesodorylaimus Microdorylaimus Fungal/Root Feeders	Foliar nematode Stem & Bulb nematode	0.13 0.04	
Expected Low Range High	10000	10000	50 100	20 30	40% 80%	40% 80%	Aphelenchoides Aphelenchus Ditylenchus		0.04 0.27 0.18	
Organism Biomass Ratios	Total Fungal to Total Bacterial	Active to Total Fungal	Active to Total Bacterial	Active Fungal to Active Bacterial	Plant Available N Supply		Filenchus Root Feeders Helicotylenchus Meloidogyne	Spiral nematode Root-Knot nematode	0.04 0.04 0.09	
Results Comments	0.09 Low	0.03 Low	0.02 Low	0.16 Low	25-50		Paratylenchus	Pin nematode	0.09	
Expected Low Range High	0.8 1.5	0.25	0.25 0.95	0.75 1.5						

728 SW Wake Robin Avenue Corvallis, OR 97333 USA

(541) 752-5066 | info@soilfoodweb.com

www.soilfoodweb.com

Long Term No-Till

Soil Foodweb Analysis

Report prepared for: Burleigh Co. Soil Conservation Vicki Bailey 1511 E. Interstate Avenue Bismarck, ND 58503-0560 US (701) 250-4363 vicki.bailey@nd.nacdnet.net		Report Sent: 07/29/2005 Sample#: 01-100984 Unique ID: GB1 Plant: Com Invoice Number: 8357 Sample Received: 07/14/2005					For interpretation of this report please contact Local Advisor: or regional lab Soil Foodweb, Inc info@soilfoodweb.com (541) 752-5066 Consulting fees may apply		
Organism Biomass Data	Dry Weight	Active Bacterial (µg/g)	Total Bacterial (µ9/9)	Active Fungal (µg/g)	Total Fungal (µg/g)	Hyphal Diameter (µm)	Nematodes per t Identification to g		
Results Comments	0.850 To Wet	46.3 Excellent	405 Excellent	5.24 Low	274 Good	2.5	Bacterial Feeders Acrobeles Acrobeloides Cephalobus Cervidellus Rhabditloae		0.81 0.18
Expected Low Range High	0.45 0.85	15 25	100 300	15 25	100 300				0.45 0.18 0.45
	Protozoa Numbers/g Flagellates Amoebae Cillates		Total Nematodes #/g	Percent Mycorrhizal Colonization ENDO ECTO		Fungal Feeders Eudorylaimus Fungal/Root Feeders	0.45		
Results Comments	178500 High	9736 Low	331 High	4.45 Low	31% Low	0% Low	Aphelenchoides Aphelenchus Ditylenchus Filenchus	Foliar nematode Stern & Bulb nematode	0.54 0.45 0. 5 4
Expected Low Range High	10000	10000	50 100	20 30	40% 80%	40% 80%			0.09
Organism Biomass Ratics	Total Fungal to Total Bacterial	Active to Total Fungal	Active to Total Bacterial	Active Fungal to Active Bacterial	Plant Available N Supply				
Results Comments	0.68 Low	0.02 Low	0.11 Low	0.11 Low	200+		-		
Expected Low Range High	0.8 1.5	0.25	0.25 0.95	0.75 1.5	No. Sold				

728 SW Wake Robin Avenue Corvallis, OR 97333 USA (541) 752-5066 | info@soilfoodweb.com www.soilfoodweb.com

Cover Crops and Compost Designing for what you don't have!

 Cover Crops can be designed to achieve specific C/N Ratios, legume & nonlegume, taproot & fibrous root and more...

 Compost can be designed to be bacterial or fungal dominate and more...

Fungal Starting Material What We Used

- 25% High Nitrogen Manure, Alfalfa, Bean, Pea
- 30% Green
 Grass Clipping, Silage

 45% Woody Wood Chips, News Paper

- Actual Nitrogen: 7 ton Manure
- Actual Green: 1 hay bale, 2 pickup loads of fresh lawn clippings
- Actual Woody: 5 ton Wood Chips, 5 bags shredded paper
- Water

• Water

"The more diversity in the recipe, the greater the biological diversity in the compost"

Wood Chips

Hay Bale

Shredded Paper and Manure

Added water as each layer was applied

Finished Product

October 10, 2008

- The compost reached 150 degrees F in 52 hours. Turned for the first time on October 10, 2008
- Temperatures kept below 160 degrees F by turning as needed

How To Apply

 As a live biology compost to the soil

How To Apply

• As an extract to the soil

How To Apply...

• As a foliar tea to the plant.

The Sieve Bag is Filled ³/₄ Full of Compost

The Compost Tea Cooks for 24 Hours

Food Amendments for the Live Biology Microbial Food Sources •Molasses •Kelp Powder •Fish Powder

Microbial Catalysts •Humic Acid •Yucca Extract •Rock Dust

Viewing the Quality and Quanity of Soil Biology before Applying

Applying a Compost Tea on Brown's Ranch 2009 20 Gallons per Acre with a Boomless Sprayer

Soil Foodweb

- Disease Suppression applied as a foliar.
- Nutrient Enhancement protozoa & nematodes consuming bacteria & fungi (who eats who).
- Soil Structure Improvement micro paths and macro paths.
- Weed Suppression F:B = 1:1
- Preventing leaching and erosion bacteria
 & fungi hold nutrients and soil particles

Where Can Gabe Go In The Great Plains Agricultural System?

- Supplying the soil biology with food and a home
- Using Cropping Systems, Grazing Systems, Cover Crops, and the Soil Food Web
- Sustainability